Tuesday, December 24, 2019
Performance Evaluation Of Biometric Verification Systems
3.5.4 Performance Evaluation The performance of biometric verification systems is typically described based on terms; the false accept rate (FAR) and a corresponding false reject rate (FRR). A false acceptance occurs when the system allows an forgerââ¬â¢s sign is accepted. A false reject ratio represents a valid user is rejected from gaining access to the system. These two errors are directly correlated, where a change in one of the rates will inversely affect the other. A common alternative to describe the performance of system is to calculate the equal error rate (EER). EER corresponds to the point where the false accept and false reject rates are equal. In order to visually comment the performance of a biometric system, receiver operating characteristic (ROC) curves are drawn. Biometric systems generate matching scores that represent how similar (or dissimilar) the input is compared with the stored template. This score is compared with a threshold to make the decision of reject ing or accepting the user. The threshold value can be changed in order to obtain various FAR and FRR combinations. 3.6 Preference of Offline Signature Verification 3.6.1 Offline (Dynamic): The signatures captured by data acquisition technique (Matlab Tool), includes the use of similar device like pressure-sensitive tablets. The webcam that extract dynamic features of a signature in addition to its shape (static), it can be used in real time applications like credit card transactions, protection ofShow MoreRelatedUsing Correlation Method For Match Two Digital Images863 Words à |à 4 Pagesconnected components which often leads to wrong ear localization as there may exist a cluster of the largest size of non-ear edges. 3. The performance obtained in the proposed technique is found to be robust and stable on a larger dataset. SECTION VI CONCLUSION AND FUTURE WORK Ear biometrics for Automatic Index Segmentation is the recent technique emerging in biometrics for authentication and identification. Ear index point detection is used as a pattern in recognition of ear images. We have identifiedRead MoreElectronic Identification Based On The Identity Of Human Beings And Reducing Forgeries1547 Words à |à 7 Pagescontinue to be an important biometric for authenticating the identity of human beings and reducing forgeries. The major challenging aspect of automated signature identification and verification has been, for a long time, a true motivation for researchers. Research into signature verification has been vigorously pursued for a number of years and is still being explored, especially in the offline mode. In this paper, we have discussed a brief overview of offline signature verification techniques for reducingRead MoreIdentifying Humans with Physical and Behavioral Traits with Biometrics1311 Words à |à 5 PagesINTRODUCTION 1.1 INTRODUCTION 1.1.1 BIOMETRICS Biometrics is the process of identifying humans by their unique physical or behavioral traits or characteristics, detected and recorded by an electronic system as a means of confirming identity. Physical traits or characteristics are related to the shape of the body (fingerprint, face recognition, DNA, palm print, hand geometry, retina, iris recognition, etc.). Behavioral traits or characteristics are related to the pattern of behavior of a personRead MoreFingerprint Biometric Attendance System7072 Words à |à 29 Pagesadditional manpower and workloads and more complicated data processing system. To meet the growing needs of education, the institution, as a result formulated new innovations, techniques, methods and modernized equipment to aid the complexity of operations. New facilities such as the computer were developed, not only for the instructions, but also for research and academic applications. Technologies such as the Fingerprint Biometrics ID System make identification and attendance an easy task. The burden willRead MoreGait Analysis8133 Words à |à 33 Pagesaccess control. Human gait is an attractive modality for recognizing people at a distance. Human gait is a spatio-temporal phenomenon that characterizes the motion characteristics of an individual. There is an increased interest in gait as a biometric, mainly due to its nonintrusive as well as non-concealable nature. It is possible to detect and measure gait even in low resolution video. Our goal is to establish a simple baseline method for human identification based on body shape and gait. OurRead MoreEvaluation Principles, Performance Measures For Microsoft Corporation And Their Corresponding Products And Services Based On Completeness, Compliance1510 Words à |à 7 Pagesability to prevent critical infrastructure failure. Research and evaluation presents policy strengths and weaknesses, then recommended changes discussed. Evaluation criteria of the cybersecurity policy identified include; critical infrastructure system recovery efforts, data protection and privacy, national policy efforts, and compliance and regulatory standards. Within the evaluation principles, performance measures for preventing system failure and maintaining resiliency are presented in qualitativeRead MoreUnit 10 Assignment 1: Controls1902 Words à |à 8 Pagesensure that hacking of the reader is not possible. Biometric scanners should be used for all sensitive areas as a second method to prevent card cloning . Those that have access to sensitive areas or doors that can allow more than one person through such as the shipping area and front double doors will be issued a Personal Identity Verification (PIV) cards. These card work with the biometric scans. When the card is scanned it relays to the biometric scanner the information that the scanner will needRead MoreThesis Copy6438 Words à |à 26 PagesWIRELESS FINGERPRINT BASED STUDENT ATTENDANCE SYSTEM A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Electrical Engineering by Debidutt Acharya(10602015) and Arun Kumar Mishra(10602061) Under the guidance of Prof. Susmita Das Department of Electrical Engineering National Institute of Technology Rourkela-769008 2010 WIRELESS FINGERPRINT BASED STUDENT ATTENDANCE SYSTEM A thesis submitted in partial fulfillment of Read MoreSrs for Online Attendance Maintainance System6178 Words à |à 25 Pages 5. Functional Requirements 4. Behavior Requirements 4.1 Use Case View 5. Other Non-Functional Requirements 5.1 Safety and Security Requirements 5.2 Software Quality Attributes 1. Introduction: Online Attendance Maintenance System is software developed for daily attendance in schools, colleges, offices, etc. It facilitates to access the attendance information of a particular employee/student in a particular institution. The information is updated into database. This will helpRead MoreBiometric Authentication : Using Ear And Finger Knuckle Images4097 Words à |à 17 Pages Biometric Authentication Algorithm: Using Ear and Finger Knuckle Images Yadniki Patil MCIS 665 Dr. Wei Li Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. XEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Monday, December 16, 2019
Urban Renewal Free Essays
What is Urban renewal? Discuss the issues and strategies of urban renewal of a state capital. Urban renewal is a program of land re-development in areas of moderate to high density urban land use. It can be envisaged as the physical and infrastructural changes in land use, built environment or intensity of the use of land or building that could be considered as inevitable outcome of the action from economic, social, political, technical and environmental forces acting upon urban areas at different times of its existence. We will write a custom essay sample on Urban Renewal or any similar topic only for you Order Now It is a program designed to help communities improve and revitalize areas that have deteriorated, are unsafe and/ or show signs of economic or physical conditions that are detrimental to the community as a whole. Urban renewal could be in the form of: -Physical change: Part of land is developed as a multistory building. -Infrastructural change: widening of roads, introduction of metro-rail, etc. -Change in land use: function of building changes, keeping the structure same eg residential to commercial -Change in built form: increase in no. of storeys. Change in environment: congestion on road cleared, trees planted , garbage removed, etc. In the second half of the 20th century, renewal often resulted in the creation of urban sprawl and vast areas of cities being demolished and replaced by freeways and expressways, housing projects, and vacant lots, some of which still remain vacant at the beginning of the 21st century. Urban renewalââ¬â¢s effect on actual revitalization is a subjec t of intense debate. It is seen by proponents as an economic engine, and by opponents as a regressive mechanism for enriching the wealthy at the expense of taxpayers and the poor. It carries a high cost to existing communities, and in many cases resulted in the destruction of vibrantââ¬âif run-down ââ¬âneighborhoods. Urban renewal in its original form has been called a failure by many urban planners and civic leaders, and has since been reformulated with a focus on redevelopment of existing communities. Over time, urban renewal evolved into a policy based less on destruction and more on renovation and investment, and today is an integral part of many local governments, often combined with small and big business incentives. But even in this adapted form, Urban Renewal projects are still widely accused of abuse and corruption. Behind the idea of urban renewal was a belief that if the government removed people from such places and put them in better places, it would improve not only their lives and their self-image, but also their behavior. This idealistic philosophy became common in America by the end of World War I. IMPORTANCE OF URBAN RENEWAL Urban renewal is critical to the success of local communities and the long-term prosperity of citizens living in urban areas. Without urban renewal, there would be no incentive for developers to tackle the challenges associated with redevelopment, and deteriorating downtown areas would be subject to increased crime and safety problems, while continued growth on the fringes of communities would add to the problem of urban sprawl. NEED FOR URBAN RENEWAL ââ¬â Rise in land value ââ¬â Expansion of service centers ââ¬â Change in transportation mode ââ¬â Latest realization of global energy scenario. BENEFITS OF URBAN RENEWAL Providing matching funds for money from other sources (such as state or federal grants) Funding infrastructure, which brings additional funds to the community through permit fees, system development charges (SDCs), water and sewer hook? up charges, etc. Increasing the value of property next to the urban renewal district. Improving the quality of life through new or renovated parks, roadways, civic and cultural facilities, and expanded economic development OBJECTIVES OF URBAN RENEWAL ââ¬â To eliminate sub optimal uses To create conditions for efficient and economic use of scarce and costly urban infrastructure. ââ¬â To improve the efficiency of urban system ââ¬â To reduce social cost of urban development and arrange for cross financing Urban renewal also took hold in medium sized cities, many of which used urban renewal laws to pay for public housing, new bridges, and new thoroughfares. There was a time when the phrase ââ¬Å"urban renewalâ⬠was a popular one. But tod ay it often carries a negative connotation, regardless of the truth, however, urban renewal did a lot to change cities. Chicagoââ¬â¢s now demolished Cabrini-Green housing project, one of many urban renewal efforts. Issue: -Cities unfortunately with some exceptions, have not been enabled to look inward and build on their inherent capacities, both financial and technical, and instead are still being seen in many states as ââ¬Ëwardsââ¬â¢ of the State governments. -A major failure of city governance has been our inability to address the needs of the poor ââ¬â basic services like drinking water supply, sanitation, housing and social services are not available to an increasing share of urban population. The latent creativity and vitality of our cities and the people who live in them must be tapped to facilitate higher economic growth. -Substantially upgrade the delivery of basic and other urban services which are in bad state. -Understand the cost and impact of providing poor basic services in the urban areas, so that efficient services can be planned. -Plan for generating gainful employment op portunities and environmental safeguarding adopting community centered approach. Provide opportunities and funds for capacity building, skill development, vocational training, and flow of micro- credit. -The Development Commission (PDC) uses urban renewal as a tool to help specific areas of the city realize capital projects ââ¬â parks, streetscape improvements, community centers, and the like that would not happen on their own. A house in Nashville before urban renewal URBAN RENEWAL SCHEMES Components of Urban Renewal: ââ¬â Urban redevelopment ââ¬â Urban Rehabilitation ââ¬â Conservation: ââ¬â Preservation ââ¬â Rebuilding ââ¬â Reuse ââ¬â Replication Urban renewal funds can be used for . . . Infrastructure (including such basic improvements as curbs and sidewalks, streets, sewers, flood control, and utility relocation and improvement) Public improvements (such as parks and open space, pedestrian and bike trails, landscaping and streetscaping, parking lots and parking structures, transportation improvements, helping to construct public buildings and facilities) In certain cases, redevelopment assistance for housing or commercial uses (such as land acquisition and site preparation or other public improvements) Planning and engineering (such as design, traffic and engineering studies); technical assistance to property owners and developers, and staff support from the renewal agency SITE SELECTION ââ¬â Should be around or within prime location ââ¬â Should intervene problem areas ââ¬â Land should be easily available ââ¬â Utility plan showing linkages with offsite infrastructure ââ¬â Landscape proposals SEQUENCE OF PROJECT FORMULATION ââ¬â Preparation o f survey maps. Types of survey maps are: -Tourism map ââ¬â 1:100000 ââ¬â City map ââ¬â 1:50000 ââ¬â Police station map : 1:63366 ( 1â⬠to a mile) Revenue survey map : 1:600 (plot size and built up spaces) ââ¬â Identification of project area and influence area ââ¬â Conduct field survey to collect socio economic data ââ¬â Land maps, land holding pattern, building height , building edge etc. ââ¬â Traffic information ââ¬â Utility services ââ¬â Financial status ââ¬â Scheme/ concept preparation ââ¬â Land use distribution ââ¬â Future built form ââ¬â Circulation plan EXECUTION OF THE SCHEME ââ¬â Land acquisition ââ¬â Payment of compensation ââ¬â Construction of rehabilitation structures ââ¬â Clearance of site and site development ââ¬â Removal of under-gound utilities and relaying of utilities ââ¬â Development of roads and other open areas When the site is ready for construction , it is either leased out to promoters or Development authorities themselves start the construction. The urban renewal of a state capital involves: Working: The basic idea behind urban renewal is simple: future tax revenues pay for revitalization efforts. The City Council, acting on the recommendations of a community based steering committee and PDC, draws a line around an area (the urban renewal boundary) and identifies desirable improvements within that area (the urban renewal plan). The city issues urban renewal bonds to pay for the identified improvements. As property values increase in the area due to new investment, the rise in property tax revenues (called ââ¬Å"tax incrementâ⬠) is used to pay off the urban renewal bonds. This financing method is called tax-increment financing, and it is the most common method of paying for improvements in an urban renewal area. Kind of projects : Urban renewal funds can be used for a variety of capital investments, such as: Redevelopment projects, such as projects near light rail that combine retail and residential components. Economic development strategies, such as small-business loans or loan programs tied to family-wage jobs. Housing loans and other financial tools for ownership and rental housing which serve a variety of income levels. Streetscape improvements, including new lighting, trees, sidewalks, pedestrian amenities, etc. Transportation enhancements, including light rail, streetcar, intersection improvements, etc. Parks and open spaces. Roots of urban renewal : Urban renewal emerged in the late 1940s as an attempt to revitalize central cities, which were losing population and resources to new post-war suburbs. Until the 1960s, urban renewal was a federal program used to clear large areas of land largely to provide what was then considered to be improved housing conditions for thousands of people. It also funded large projects such as hospitals, highways and civic centers. The funding mechanisms and purposes of urban renewal changed in its early decades, but the term broadly referred to a set of programs and policies meant to counter inner-city disinvestment and reinvigorate declining downtown areas. Criteria : Urban renewal areas must show evidence of some degree of blight, demonstrated by conditions such as poorly constructed buildings, faulty planning, lack of open spaces, deteriorated properties, an incompatible mix of uses and improper utilization of land. -Urban renewal areas, their principles and the specific projects funded by them are conceived in consultation with citizen committees who represent a broad spectrum of community interests. In addition, three public bodies must approve any new urban renewal area: the Portland Development Commission, the Portland Planning Commission, and City Council. -In urban renewal areas, public investment is used to stimulate private investment on a much larger scale. The amount of urban renewal funds invested in any one area is small compared to the private investment that follows. -Urban renewal is primarily used to update and improve an areaââ¬â¢s infrastructure ââ¬â through capital expenditures on transportation improvements and parks for example ââ¬â and to provide incentives for desired development such as affordable housing, family-wage jobs and building refurbishment. -Urban renewal is designed to benefit all people within the urban renewal area, in surrounding neighborhoods and throughout the city and metropolitan area. -The urban renewal plan, which guides all public spending in the area, is conceived by citizens who are best able to make decisions about how to improve their neighborhood. Urban renewal can be a strong and effective tool to protect long-term affordability in revitalizing neighborhoods by financing the construction of affordable housing. -Urban renewal works to revitalize communities within the existing built en vironment. -Promote livelihood opportunities through skill building and enhancement of entrepreneurship. Enable public private partnership arrangement covering infrastructure development and service delivery. -The realization of the overall programme goal of improving the quality of life for all is possible only through the framework of long term development plan, replacing the narrow project based approach. How to cite Urban Renewal, Essay examples
Sunday, December 8, 2019
More sinned against than sinning free essay sample
The main emphasis of the subject Tess: More sinned against than sinning is that the protagonist who is sinned against more than commits sin is ultimately the victim in the narrative. In Tess of the Dââ¬â¢Urbervilles, Tess is usually judged on the purity of her intentions, and how much she was taken advantage of. A conservative reading from the era would seem to suggest that the fact that Tess lost her virtue would be enough to describe her as a ââ¬Ëfallen womanââ¬â¢ ââ¬Å"whose fornication, adultery and crime of murder marked her as outrageously ââ¬Ëimpureââ¬â¢ in conventional terms.â⬠Tess of The DUrbervilles is one of the first ten greatest novels in the various languages of Europe. It is the masterpiece of Thomas Hardy. When Tess was first published it had an immediate success and it has remained a best-seller ever since. It is an epic novel, for it is convened only with the life and tragic death of a country maid named Tess Durbeyfield. It is the best manifestation of Hardys creative genius. It deals with Hardys philosophy of realism. It illustrates Hardys theory of will. Fate plays an important part in its scheme of things but we are aware of its working only when Hardy steps forward and begins to give his comment. This novel is the story of pure women who is loved by a man whom she hates and who deserted by a man whom she loves with her soul. Tess tragedy is a specimen syllogism in the cruel reasoning of universal fate. Her tortured life, unnecessarily sensitive, is nothing but the symbolic language, wherein the premises of Fate are quietly and ruthlessly worked out. Fate that haunts Tess, is cruel, merciless and relentless, it swallows her up ultimately! The story of Tess of the DUrbervilles is deeply, insistently set in time and place. Tess is a pure woman, but she is not the manifestation of some Platonic conception of womanhood. She is a English country girl, the product of a particular place and time. Tess is a Durbeyfield, dairy produce, who lives in the second half of the nineteenth century in that part of southern England that Hardy called Wessex. The very word Wessex at once fictional and historical, tells us something of the nature of the authors creative imagination, so steeped in history and sense of place. The history and geography of southern England, are just a necessary background to Tesss story, they are integral to it, evening atà every turn and level into the essence of the situation that Hardy describes. Tesss fall, is integrally bound up with the social situation of the Durbeyfields. Tess represents an explicit attempt to replace a more marginal figure, the fallen woman as sign. She is an explicitly sexual being, her appearance described with the same directness as Graces feelings : she had .. a luxurious of aspect, a fullness of growth, which made her appear more of a woman than she really was. The present novel bears witness to Hardys power of creating women characters successfully and well. Tess is a sensitive passionate and earthly figure. There is in her a flowering of the flesh, a physical element which believes in the purity of her spirit and intensions. She is ruined to death while struggling against the gaunt of circumstances. Tess passes through a school of suffering and emerges a woman, almost divine and godly. Mr. and Mrs. Durbeyfield are her parents. They are created to show heredity moulds the character of a man or woman and how this character become his or her fate. She goes to Tantridge only when she is compelled by her mother. She does not like it but she realizes her responsibility and works as farm-keeper. Alec comes to take her from her home to Tantridge. On the way he kisser her against her will. After some days he pitilessly seduces her. After four month she returns home. In due course she gives birth to a baby named sorrow. This is her only sin. But she cannot be blame for it. She falls a helpless victim to her circumstances. She has nothing to do against the evil desighns of a reckless youth. But she has been an unwilling sinner. She hates Alec and rejects his offers again and again. She comes back to him only when she is convinced by hi, that Angel will not return. But as soon as Angel comes to her, she stabs Alec to death. The only sin she does is to accept Alec. But even here she is compelled by her circumstances. Her father has died. Alec has been helping her family and repeating his proposal. She writes to Angel again and again but gets no reply. If Angel came a little earlier she would never accepted Alec. The most cruel treatment is meted out to her by Angel. She loves him and can sacrifice even her life for him. She writes a letter to him clearly stating her affair with Alec but unfortunately Angel does not get it. After they getà married she tells him about it and begs pardon but Angel does not hear anything and reacts as a deaf ear and deserts her. Angel does a great injustice to her. He deserts her although her innocence. The punishment she gets is undeserved. Although she knows that Angel has passed a cruel sentence on her, she obeys him as a faithful wife. Tess remains loyal to him to the last moment. But she is made a plaything by Fate. The invisible hands of Fate draw her to her tragic en. When she is hanged , Hardy says, Justice was done, and the President of the Immortals in Aschylean phrases, had ended his sport with Tess. Odds are infinity to one against her chance of liking happily in this vale of tears. She knows well that she is washed down into the gulf of rain and death. Thus this masterpiece of Thomas Hardy brings the prose tragedy to a very high point to artistic perfection. From first to last, Tess of the DUrbervilles is one relentless onward movement. The human narrative the surrounding nature, the accompaniment of intellectual and emotional significance, all weave inextricably together, and go forward dominated by a unity of purpose. They write in a single epic statement, formidable in its bare simplicity, of the conflict between Personal and Impersonal, the conflict, which is the inmost vitality of all Hardys noblest work.
Sunday, December 1, 2019
Varian Solution free essay sample
Chapter 1 NAME The Market Introduction. The problems in this chapter examine some variations on the apartment market described in the text. In most of the problems we work with the true demand curve constructed from the reservation prices of the consumers rather than the ââ¬Å"smoothedâ⬠demand curve that we used in the text. Remember that the reservation price of a consumer is that price where he is just indi? erent between renting or not renting the apartment. At any price below the reservation price the consumer will demand one apartment, at any price above the reservation price the consumer will demand zero apartments, and exactly at the reservation price the consumer will be indi? erent between having zero or one apartment. You should also observe that when demand curves have the ââ¬Å"staircaseâ⬠shape used here, there will typically be a range of prices where supply equals demand. Thus we will ask for the the highest and lowest price in the range. We will write a custom essay sample on Varian Solution or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page 1. 1 (3) Suppose that we have 8 people who want to rent an apartment. Their reservation prices are given below. To keep the numbers small, think of these numbers as being daily rent payments. ) Person Price = A = 40 B 25 C D 30 35 E 10 F 18 G 15 H 5 (a) Plot the market demand curve in the following graph. (Hint: When the market price is equal to some consumer iââ¬â¢s reservation price, there will be two di? erent quantities of apartments demanded, since consumer i will be indi? erent between having or not having an apartment. ) 2 THE MARKET (Ch. 1) Price 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 Apartments (b) Suppose the supply of apartments is ? xed at 5 units. In this case there is a whole range of prices that will be equilibrium prices. What is the highest price that would make the demand for apartments equal to 5 units? $18. $15. A, B, C, D. $10 to $15. (c) What is the lowest price that would make the market demand equal to 5 units? (d) With a supply of 4 apartments, which of the people Aââ¬âH end up getting apartments? (e) What if the supply of apartments increases to 6 units. What is the range of equilibrium prices? 1. 2 (3) Suppose that there are originally 5 units in the market and that 1 of them is turned into a condominium. (a) Suppose that person A decides to buy the condominium. What will be the highest price at which the demand for apartments will equal the supply of apartments? What will be the lowest price? Enter your answers in column A, in the table. Then calculate the equilibrium prices of apartments if B, C, . . . , decide to buy the condominium. NAME 3 Person High price Low price A B C D E F G H 18 15 18 15 18 15 18 15 25 18 25 15 25 18 25 18 (b) Suppose that there were two people at each reservation price and 10 apartments. What is the highest price at which demand equals supply? 18. Suppose that one of the apartments was turned into a condo- minium. Is that price still an equilibrium price? Yes. 1. 3 (2) Suppose now that a monopolist owns all the apartments and that he is trying to determine which price and quantity maximize his revenues. (a) Fill in the box with the maximum price and revenue that the monopolist can make if he rents 1, 2, . . . , 8 apartments. (Assume that he must charge one price for all apartments. ) Number Price Revenue 1 2 3 4 5 6 7 8 40 40 35 70 30 90 25 100 18 90 15 90 10 70 5 40 (b) Which of the people Aââ¬âF would get apartments? A, B, C, D. $18. (c) If the monopolist were required by law to rent exactly 5 apartments, what price would he charge to maximize his revenue? d) Who would get apartments? A, B, C, D, F. (e) If this landlord could charge each individual a di? erent price, and he knew the reservation prices of all the individuals, what is the maximum revenue he could make if he rented all 5 apartments? $148. (f ) If 5 apartments were rented, which individuals would get the apartments? A, B, C, D, F. 1. 4 (2) Suppose that there are 5 a partments to be rented and that the city rent-control board sets a maximum rent of $9. Further suppose that people A, B, C, D, and E manage to get an apartment, while F, G, and H are frozen out. 4 THE MARKET Ch. 1) (a) If subletting is legalââ¬âor, at least, practicedââ¬âwho will sublet to whom in equilibrium? (Assume that people who sublet can evade the city rentcontrol restrictions. ) E, who is willing to pay only F, $10 for an apartment would sublet to who is willing to pay $18. (b) What will be the maximum amount that can be charged for the sublet payment? $18. A, (c) If you have rent control with unlimited subletting allowed, which of the consumers described above will end up in the 5 apartments? B, C, D, F. (d) How does this compare to the market outcome? Itââ¬â¢s the same. 1. (2) In the text we argued that a tax on landlords would not get passed along to the renters. What would happen if instead the tax was imposed on renters? (a) To answer this question, consider the group of people in Problem 1. 1. What is the maximum that they would be willing to pay to the landlord if they each had to pay a $5 tax on apartments to the city? Fill in the box below with these reservation prices. Person Reservation Price A B C D E F G H 35 20 25 30 5 13 10 0 (b) Using this information determine the maximum equilibrium price if there are 5 apartments to be rented. $13. c) Of course, the total price a renter pays consists of his or her rent plus the tax. This amount is $18. (d) How does this compare to what happens if the tax is levied on the landlords? Itââ¬â¢s the same. Chapter 2 NAME Budget Constraint Introduction. These workouts are designed to build your skills in describing economic situations with graphs and algebra. Budget sets are a good place to start, because both the algebra and the graphing are very easy. Where there are just two goods, a consumer who consumes x1 units of good 1 and x2 units of good 2 is said to consume the consumption bundle, ( x1 , x2 ). Any onsumption bundle can be represented by a point on a two-dimensional graph with quantities of good 1 on the horizontal axis and quantities of good 2 on the vertical axis. If the prices are p1 for good 1 and p2 for good 2, and if the consumer has income m, then she can a? ord any consumption bundle, (x1 , x2 ), such that p1 x1 +p2 x2 ? m. On a graph, the budget line is just the line segment with equation p1 x1 + p2 x2 = m and with x1 and x2 both nonnegative. The budget line is the boundary of the budget set. All of the points that the consumer can a? ord lie on one side of the line and all of the points that the consumer cannot a? rd lie on the other. If you know prices and income, you can construct a consumerââ¬â¢s budget line by ? nding two commodity bundles that she can ââ¬Å"just a? ordâ⬠and drawing the straight line that runs through both points. Example: Myrtle has 50 dollars to spend. She consumes only apples and bananas. Apples cost 2 dollars each and bananas cost 1 dollar each. You are to graph her budget line, where apples are measured on the horizontal axis and bananas on the vertical axis. Notice that if she spends all of her income on apples, she can a? ord 25 apples and no bananas. Therefore her budget line goes through the point (25, 0) on the horizontal axis. If she spends all of her income on bananas, she can a? ord 50 bananas and no apples. Therfore her budget line also passes throught the point (0, 50) on the vertical axis. Mark these two points on your graph. Then draw a straight line between them. This is Myrtleââ¬â¢s budget line. What if you are not told prices or income, but you know two commodity bundles that the consumer can just a? ord? Then, if there are just two commodities, you know that a unique line can be drawn through two points, so you have enough information to draw the budget line. Example: Laurel consumes only ale and bread. If she spends all of her income, she can just a? ord 20 bottles of ale and 5 loaves of bread. Another commodity bundle that she can a? ord if she spends her entire income is 10 bottles of ale and 10 loaves of bread. If the price of ale is 1 dollar per bottle, how much money does she have to spend? You could solve this problem graphically. Measure ale on the horizontal axis and bread on the vertical axis. Plot the two points, (20, 5) and (10, 10), that you know to be on the budget line. Draw the straight line between these points and extend the line to the horizontal axis. This point denotes the amount of 6 BUDGET CONSTRAINT (Ch. 2) ale Laurel can a? ord if she spends all of her money on ale. Since ale costs 1 dollar a bottle, her income in dollars is equal to the largest number of bottles she can a? ord. Alternatively, you can reason as follows. Since the bundles (20, 5) and (10, 10) cost the same, it must be that giving up 10 bottles of ale makes her able to a? ord an extra 5 loaves of bread. So bread costs twice as much as ale. The price of ale is 1 dollar, so the price of bread is 2 dollars. The bundle (20, 5) costs as much as her income. Therefore her income must be 20 ? 1 + 5 ? 2 = 30. When you have completed this workout, we hope that you will be able to do the following: â⬠¢ Write an equation for the budget line and draw the budget set on a graph when you are given prices and income or when you are given two points on the budget line. â⬠¢ Graph the e? ects of changes in prices and income on budget sets. â⬠¢ Understand the concept of numeraire and know what happens to the budget set when income and all prices are multiplied by the same positive amount. â⬠¢ Know what the budget set looks like if one or more of the prices is negative. See that the idea of a ââ¬Å"budget setâ⬠can be applied to constrained choices where there are other constraints on what you can have, in addition to a constraint on money expenditure. NAME 7 2. 1 (0) You have an income of $40 to spend on two commodities. Commodity 1 costs $10 per unit, and commodity 2 costs $5 per unit. (a) Write down your budget equation. 101 + 52 = 40. (b) If you spent all your income on commodity 1, how much could you buy? 4. 8. Use blue ink to draw your budget line in the graph (c) If you spent all of your income on commodity 2, how much could you buy? elow. x2 8 6 4 2 ,,,,,, ,,,,,, Line Blue ,,,,,, ,,,,,, ,,,,,, Red Line ,,,,,, ,,,,,, ,,,,,,Black Shading ,,,,,, ,,,,,, ,,,,,, ,,,,,,,,,,,,, ,,,,,, ,,,,,,,,,,,,, Black Line ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, Blue ,,,,,,,,,,,,, ,,,,,,,,,,,,, Shading ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, 2 4 6 8 x1 0 (d) Suppose that the price of commodity 1 falls to $5 while everything else stays the same. Write down your new budget equation. 51 +52 = 40. On the graph above, use red ink to draw your new budget line. e) Suppose that the amount you are allowed to spend falls to $30, while the prices of both commodities remain at $5. Write down your budget equation. line. 51 + 52 = 30. Use black ink to draw this budget (f) On your diagram, u se blue ink to shade in the area representing commodity bundles that you can a? ord with the budget in Part (e) but could not a? ord to buy with the budget in Part (a). Use black ink or pencil to shade in the area representing commodity bundles that you could a? ord with the budget in Part (a) but cannot a? ord with the budget in Part (e). 2. 2 (0) On the graph below, draw a budget line for each case. BUDGET CONSTRAINT (Ch. 2) (a) p1 = 1, p2 = 1, m = 15. (Use blue ink. ) (b) p1 = 1, p2 = 2, m = 20. (Use red ink. ) (c) p1 = 0, p2 = 1, m = 10. (Use black ink. ) (d) p1 = p2 , m = 15p1 . (Use pencil or black ink. Hint: How much of good 1 could you a? ord if you spend your entire budget on good 1? ) x2 20 15 Blue Line Black Line 10 Red Line 5 0 5 10 15 20 x1 2. 3 (0) Your budget is such that if you spend your entire income, you can a? ord either 4 units of good x and 6 units of good y or 12 units of x and 2 units of y. (a) Mark these two consumption bundles and draw the budget line in th e graph below. 16 12 8 4 0 4 8 12 16 x NAME 9 (b) What is the ratio of the price of x to the price of y? 1/2. (c) If you spent all of your income on x, how much x could you buy? 16. (d) If you spent all of your income on y, how much y could you buy? 8. (e) Write a budget equation that gives you this budget line, where the price of x is 1. x + 2y = 16. 3x + 6y = 48. (f ) Write another budget equation that gives you the same budget line, but where the price of x is 3. 2. 4 (1) Murphy was consuming 100 units of X and 50 units of Y . The price of X rose from 2 to 3. The price of Y remained at 4. a) How much would Murphyââ¬â¢s income have to rise so that he can still exactly a? ord 100 units of X and 50 units of Y ? $100. 2. 5 (1) If Amy spent her entire allowance, she could a? ord 8 candy bars and 8 comic books a week. She could also just a? ord 10 candy bars and 4 comic books a week. The price of a candy bar is 50 cents. Draw her budget line in the box below. What is Amyââ¬â¢s we ekly allowance? $6. Comic books 32 24 16 8 0 8 12 16 24 32 Candy bars 10 BUDGET CONSTRAINT (Ch. 2) 2. 6 (0) In a small country near the Baltic Sea, there are only three commodities: potatoes, meatballs, and jam. Prices have been remarkably stable for the last 50 years or so. Potatoes cost 2 crowns per sack, meatballs cost 4 crowns per crock, and jam costs 6 crowns per jar. (a) Write down a budget equation for a citizen named Gunnar who has an income of 360 crowns per year. Let P stand for the number of sacks of potatoes, M for the number of crocks of meatballs, and J for the number of jars of jam consumed by Gunnar in a year. 2P + 4M + 6J = 360. (b) The citizens of this country are in general very clever people, but they are not good at multiplying by 2. This made shopping for potatoes excruciatingly di? ult for many citizens. Therefore it was decided to introduce a new unit of currency, such that potatoes would be the numeraire. A sack of potatoes costs one unit of the new currency while the same relative prices apply as in the past. In terms of the new currency, what is the price of meatballs? 2 crowns. 3 (c) In terms of the new currency, what is the price of jam? crowns. (d) What would Gu nnarââ¬â¢s income in the new currency have to be for him to be exactly able to a? ord the same commodity bundles that he could a? ord before the change? 180 crowns. P + 2M + 3J = (e) Write down Gunnarââ¬â¢s new budget equation. 80. No. Is Gunnarââ¬â¢s budget set any di? erent than it was before the change? 2. 7 (0) Edmund Stench consumes two commodities, namely garbage and punk rock video cassettes. He doesnââ¬â¢t actually eat the former but keeps it in his backyard where it is eaten by billy goats and assorted vermin. The reason that he accepts the garbage is that people pay him $2 per sack for taking it. Edmund can accept as much garbage as he wishes at that price. He has no other source of income. Video cassettes cost him $6 each. (a) If Edmund accepts zero sacks of garbage, how many video cassettes can he buy? 0. NAME 11 b) If he accepts 15 sacks of garbage, how many video cassettes can he buy? 5. 6C ? 2G = 0. (c) Write down an equation for his budget line. (d) Draw Edmundââ¬â¢s budget line and shade in his budget set. Garbage 20 15 10 5 ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,Budget Line ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, Set Budget ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, 5 10 15 20 Video cassettes 0 2. 8 (0) If you think Edmund is odd, consider his brother Emmett. Emmett consumes speeches by politicians and university administrators. He is paid $1 per hour for listening to politicians and $2 per hour for listening to university administrators. (Emmett is in great demand to help ? ll empty chairs at public lectures because of his distinguished appearance and his ability to refrain from making rude noises. ) Emmett consumes one good for which he must pay. We have agreed not to disclose what that good is, but we can tell you that it costs $15 per unit and we shall call it Good X. In addition to what he is paid for consuming speeches, Emmett receives a pension of $50 per week. Administrator speeches 100 75 50 25 0 25 50 5 100 Politician speeches 12 BUDGET CONSTRAINT (Ch. 2) (a) Write down a budget equation stating those combinations of the three commodities, Good X, hours of speeches by politicians (P ), and hours of speeches by university administrators (A) that Emmett could a? ord to consume per week. 15X ? 1P ? 2A = 50. (b) On the graph above, draw a two-dimensional diagram showing the locus of consumptions of the two kinds of speeches that would be possible for Emmett if he consumed 10 units of Good X per week. 2. 9 (0) Jonathan Livingstone Yuppie is a prosperous lawyer. He has, in his own words, ââ¬Å"outgrown those con? ing two-commodity limits. â⬠Jonathan consumes three goods, unblended Scotch whiskey, designer tennis shoes, and meals in French gourmet restaurants. The price of Jonathanââ¬â¢s brand of whiskey is $20 per bottle, the price of designer tennis shoes is $80 per pair, and the price of gourmet restaurant meals is $50 per meal. After he has paid his taxes and alimony, Jonathan has $400 a week to spend. (a) Write down a budget equation for Jonathan, where W stands for the number of bottles of whiskey, T stands for the number of pairs of tennis shoes, and M for the number of gourmet restaurant meals that he consumes. 0W + 80T + 50M = 400. (b) Draw a three-dimensional diagram to show his budget set. Label the intersections of the budget set with each axis. M 8 5 20 T W (c ) Suppose that he determines that he will buy one pair of designer tennis shoes per week. What equation must be satis? ed by the combinations of restaurant meals and whiskey that he could a? ord? 20W +50M = 320. 2. 10 (0) Martha is preparing for exams in economics and sociology. She has time to read 40 pages of economics and 30 pages of sociology. In the same amount of time she could also read 30 pages of economics and 60 pages of sociology. NAME 13 (a) Assuming that the number of pages per hour that she can read of either subject does not depend on how she allocates her time, how many pages of sociology could she read if she decided to spend all of her time on sociology and none on economics? 150 pages. (Hint: You have two points on her budget line, so you should be able to determine the entire line. ) (b) How many pages of economics could she read if she decided to spend all of her time reading economics? 50 pages. 2. 11 (1) Harry Hype has $5,000 to spend on advertising a new kind of dehydrated sushi. Market research shows that the people most likely to buy this new product are recent recipients of M. B. A. degrees and lawyers who own hot tubs. Harry is considering advertising in two publications, a boring business magazine and a trendy consumer publication for people who wish they lived in California. Fact 1: Ads in the boring business magazine cost $500 each and ads in the consumer magazine cost $250 each. Fact 2: Each ad in the business magazine will be read by 1,000 recent M. B. A. ââ¬â¢s and 300 lawyers with hot tubs. Fact 3: Each ad in the consumer publication will be read by 300 recent M. B. A. ââ¬â¢s and 250 lawyers who own hot tubs. Fact 4: Nobody reads more than one ad, and nobody who reads one magazine reads the other. (a) If Harry spends his entire advertising budget on the business publication, his ad will be read by 10,000 recent M. B. A. ââ¬â¢s and by 3,000 lawyers with hot tubs. (b) If he spends his entire advertising budget on the consumer publication, his ad will be read by lawyers with hot tubs. 6,000 recent M. B. A. ââ¬â¢s and by 5,000 (c) Suppose he spent half of his advertising budget on each publication. His ad would be read by lawyers with hot tubs. 8,000 recent M. B. A. ââ¬â¢s and by 4,000 (d) Draw a ââ¬Å"budget lineâ⬠showing the combinations of number of readings by recent M. B. A. ââ¬â¢s and by lawyers with hot tubs that he can obtain if he spends his entire advertising budget. Does this line extend all the way to the axes? No. Sketch, shade in, and label the budget set, which includes all the combinations of MBAââ¬â¢s and lawyers he can reach if he spends no more than his budget. 14 BUDGET CONSTRAINT (Ch. 2) (e) Let M stand for the number of instances of an ad being read by an M. B. A. and L stand for the number of instances of an ad being read by a lawyer. This budget line is a line segment that lies on the line with equation M + 2L = 16. With a ? xed advertising budget, how many readings by M. B. A. ââ¬â¢s must he sacri? ce to get an additional reading by a lawyer with a hot tub? MBAs x 1000 16 2. 12 10 8 6 4 a ,,,,,,,, ,,,,,,,, ,,,,,,,, c ,,,,,,,, ,,,,,,,, ,,,,,,,, b ,,,,,,,, ,,,,,,,, Budget ,,,,,,,, ,,,,,,,, Set ,,,,,,,, ,,,,,,,, ,,,,,,,, ,,,,,,,, ,,,,,,,, ,,,,,,,, 3 5 2 4 8 Budget line 0 12 16 Lawyers x 1000 2. 12 (0) On the planet Mungo, they have two kinds of money, blue money and red money. Every commodity has two pricesââ¬âa red-money price and a blue-money price. Every Mungoan has two incomesââ¬âa red income and a blue income. In order to buy an object, a Mungoan has to pay that objectââ¬â¢s redmoney price in red money and its blue-money price in blue money. (The shops simply have two cash registers, and you have to pay at both registers to buy an object. ) It is forbidden to trade one kind of money for the other, and this prohibition is strictly enforced by Mungoââ¬â¢s ruthless and e? cient monetary police. â⬠¢ There are just two consumer goods on Mungo, ambrosia and bubble gum. All Mungoans prefer more of each good to less. â⬠¢ The blue prices are 1 bcu (bcu stands for blue currency unit) per unit of ambrosia and 1 bcu per unit of bubble gum. â⬠¢ The red prices are 2 rcus (red currency units) per unit of ambrosia and 6 rcus per unit of bubble gum. (a) On the graph below, draw the red budget (with red ink) and the blue budget (with blue ink) for a Mungoan named Harold whose blue income is 10 and whose red income is 30. Shade in the ââ¬Å"budget setâ⬠containing all of the commodity bundles that Harold can a? ord, given NAME 15 its? wo budget constraints. Remember, Harold has to have enough blue money and enough red money to pay both the blue-money cost and the red-money cost of a bundle of goods. Gum 20 15 10 Blue Lines 5 ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, 5 10 Red Line 15 20 Ambrosia 0 (b) Another Mungoan, Gladys, faces the same prices that Harold faces and has the same red income as Harold, but Gladys has a blue income of 20. Explain how it is that Gladys will not spend its entire blue income no matter what its tastes may be. Hint: Draw Gladysââ¬â¢s budget lines. ) The blue budget line lies strictly outside the red budget line, so to satisfy both budgets, one must be strictly inside the red budget line. (c) A group of radical economic reformers on Mungo believe that the currency rules are unfair. ââ¬Å"Why should everyone have to pay two prices for everything? â⬠they ask. They propose the following scheme. Mungo will continue to have two currencies, every good will have a blue price and a red price, and every Mungoan will have a blue income and a red income. But nobody has to pay both prices. Instead, everyone on Mungo must declare itself to be either a Blue-Money Purchaser (a ââ¬Å"Blueâ⬠) or a RedMoney Purchaser (a ââ¬Å"Redâ⬠) before it buys anything at all. Blues must make all of their purchases in blue money at the blue prices, spending only their blue incomes. Reds must make all of their purchases in red money, spending only their red incomes. Suppose that Harold has the same income after this reform, and that prices do not change. Before declaring which kind of purchaser it will be, We refer to all Mungoans by the gender-neutral pronoun, ââ¬Å"it. Although Mungo has two sexes, neither of them is remotely like either of ours. ? 16 BUDGET CONSTRAINT (Ch. 2) Harold contemplates the set of commodity bundles that it could a? ord by making one declaration or the other. Let us call a commodity bundle ââ¬Å"attainableâ⬠if Harold can a? ord it by declaring itself to be a ââ¬Å"Blueâ⬠and buying the bundle with blue money or if Harold can a? ord the bundle by declaring itself to be a ââ¬Å"Redâ⬠and buying it with red money. On the diagram below, shade in all of the attainable bundles. Gum 20 15 10 5 ,,,,,,,,,,,, Blue Line ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,, Line Red ,,,,,,,,,,,,, ,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,, 5 10 15 20 Ambrosia 0 2. 13 (0) Are Mungoan budgets really so fanciful? Can you think of situations on earth where people must simultaneously satisfy more than one budget constraint? Is money the only scarce resource that people use up when consuming? Consumption of many commodities takes time as well as money. People have to simultaneously satisfy a time budget and a money budget. Other examplespeople may have a calorie budget or a cholesterol budget or an alcohol-intake budget. Chapter 3 NAME Preferences Introduction. In the previous section you learned how to use graphs to show the set of commodity bundles that a consumer can a? ord. In this section, you learn to put information about the consumerââ¬â¢s preferences on the same kind of graph. Most of the problems ask you to draw indi? erence curves. Sometimes we give you a formula for the indi? erence curve. Then all you have to do is graph a known equation. But in some problems, we give you only ââ¬Å"qualitativeâ⬠information about the consumerââ¬â¢s preferences and ask you to sketch indi? erence curves that are consistent with this information. This requires a little more thought. Donââ¬â¢t be surprised or disappointed if you cannot immediately see the answer when you look at a problem, and donââ¬â¢t expect that you will ? nd the answers hiding somewhere in your textbook. The best way we know to ? nd answers is to ââ¬Å"think and doodle. â⬠Draw some axes on scratch paper and label them, then mark a point on your graph and ask yourself, ââ¬Å"What other points on the graph would the consumer ? d indi? erent to this point? â⬠If possible, draw a curve connecting such points, making sure that the shape of the line you draw re? ects the features required by the problem. This gives you one indi? erence curve. Now pick another point that is preferred to the ? rst one you drew and draw an indi? erence curve throug h it. Example: Jocasta loves to dance and hates housecleaning. She has strictly convex preferences. She prefers dancing to any other activity and never gets tired of dancing, but the more time she spends cleaning house, the less happy she is. Let us try to draw an indi? erence curve that is consistent with her preferences. There is not enough information here to tell us exactly where her indi? erence curves go, but there is enough information to determine some things about their shape. Take a piece of scratch paper and draw a pair of axes. Label the horizontal axis ââ¬Å"Hours per day of housecleaning. â⬠Label the vertical axis ââ¬Å"Hours per day of dancing. â⬠Mark a point a little ways up the vertical axis and write a 4 next to it. At this point, she spends 4 hours a day dancing and no time housecleaning. Other points that would be indi? erent to this point would have to be points where she did more dancing and more housecleaning. The pain of the extra housekeeping should just compensate for the pleasure of the extra dancing. So an indi? erence curve for Jocasta must be upward sloping. Because she loves dancing and hates housecleaning, it must be that she prefers all the points above this indi? erence curve to all of the points on or below it. If Jocasta has strictly convex preferences, then it must be that if you draw a line between any two points on the same indi? rence curve, all the points on the line (except the endpoints) are preferred to the endpoints. For this to be the case, it must be that the indi? erence curve slopes upward ever more steeply as you move to the right along it. You should convince yourself of this by making some drawings on scratch 18 PREFERENCES (Ch. 3) paper. Draw an upward-sloping curve passing through the point (0, 4) and getting steeper as one moves to the right. When you have completed this workout, we hope that you will be able to do the following: â⬠¢ Given the formula for an indi? erence curve, draw this curve, and ? d its slope at any point on the curve. â⬠¢ Determine whether a consumer prefers one bundle to another or is indi? erent between them, given speci? c indi? erence curves. â⬠¢ Draw indi? erence curves for the special cases of perfect substitutes and perfect complements. â⬠¢ Draw indi? erence curves for someone who dislikes one or both commodities. â⬠¢ Draw indi? erence curves for someone who likes goods up to a point but who can get ââ¬Å"too muchâ⬠of one or more goods. â⬠¢ Identify weakly preferred sets and determine whether these are convex sets and whether preferences are convex. Know what the marginal rate of substitution is and be able to determine whether an indi? erence curve exhibits ââ¬Å"diminishing marginal rate of substitution. â⬠â⬠¢ Determine whether a preferenc e relation or any other relation between pairs of things is transitive, whether it is re? exive, and whether it is complete. 3. 1 (0) Charlie likes both apples and bananas. He consumes nothing else. The consumption bundle where Charlie consumes xA bushels of apples per year and xB bushels of bananas per year is written as (xA , xB ). Last year, Charlie consumed 20 bushels of apples and 5 bushels of bananas. It happens that the set of consumption bundles (xA , xB ) such that Charlie is indi? erent between (xA , xB ) and (20, 5) is the set of all bundles such that xB = 100/xA . The set of bundles (xA , xB ) such that Charlie is just indi? erent between (xA , xB ) and the bundle (10, 15) is the set of bundles such that xB = 150/xA . (a) On the graph below, plot several points that lie on the indi? erence curve that passes through the point (20, 5), and sketch this curve, using blue ink. Do the same, using red ink, for the indi? erence curve passing through the point (10, 15). b) Use pencil to shade in the set of commodity bundles that Charlie weakly prefers to the bundle (10, 15). Use blue ink to shade in the set of commodity bundles such that Charlie weakly prefers (20, 5) to these bundles. NAME 19 Bananas 40 30 20 10 ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,, ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, Red Curve ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, Pencil Shading ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, Blue Curve ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, Blue Shading ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, 10 20 30 40 Apples 0 For each of the following statements about Charlieââ¬â¢s preferences, write ââ¬Å"trueâ⬠or ââ¬Å"false. â⬠(c) (30, 5) ? (10, 15). (d) (10, 15) (e) (20, 5) (f ) (24, 4) (g) (11, 14) (20, 5). (10, 10). (11, 9. 1). (2, 49). True. True. True. False. True. (h) A set is convex if for any two points in the set, the line segment between them is also in the set. Is the set of bundles that Charlie weakly prefers to (20, 5) a convex set? Yes. (i) Is the set of bundles that Charlie considers inferior to (20, 5) a convex set? No. rate of (j) The slope of Charlieââ¬â¢s indi? erence curve through a point, (xA , xB ), is known as his marginal substitution at that point. 20 PREFERENCES (Ch. 3) (k) Remember that Charlieââ¬â¢s indi? rence curve through the point (10, 10) has the equation xB = 100/xA . Those of you who know calculus will remember that the slope of a curve is just its derivative, which in this case is ? 100/x2 . (If you donââ¬â¢t know calculus, you will have to take our A word for this. ) Find Charlieââ¬â¢s marginal rate of substitution at the point, (10, 10). ?1. ?4. (l) What is his marginal rate of substitution at the point (5, 20)? (m) What is his marginal rate of substitution at the point (20, 5)? (?. 25). (n) Do the indi? erence curves you have drawn for Charlie exhibit diminishing marginal rate of substitution? Yes. 3. 2 (0) Ambrose consumes only nuts and berries. Fortunately, he likes both goods. The consumption bundle where Ambrose consumes x1 units of nuts per week and x2 units of berries per week is written as (x1 , x2 ). The set of consumption bundles (x1 , x2 ) such that Ambrose is indi? erent between (x1 , x2 ) and (1, 16) is the set of bundles such that x1 ? 0, x2 ? 0, v and x2 = 20 ? 4 x1 . The set of bundles (x1 , x2 ) such that (x1 , x2 ) ? v (36, 0) is the set of bundles such that x1 ? 0, x2 ? 0 and x2 = 24 ? 4 x1 . (a) On the graph below, plot several points that lie on the indi? erence curve that passes through the point (1, 16), and sketch this curve, using blue ink. Do the same, using red ink, for the indi? erence curve passing through the point (36, 0). b) Use pencil to shade in the set of commodity bundles that Ambrose weakly prefers to the bundle (1, 16). Use red ink to shade in the set of all commodity bundles (x1 , x2 ) such that Ambrose weakly prefers (36, 0) to these bundles. Is the set of bundles that Ambrose prefers to (1, 16) a convex set? Yes. (c) Wh at is the slope of Ambroseââ¬â¢s indi? erence curve at the point (9, 8)? (Hint: Recall from calculus the way to calculate the slope of a curve. If you donââ¬â¢t know calculus, you will have to draw your diagram carefully and estimate the slope. ) ?2/3. NAME 21 (d) What is the slope of his indi? erence curve at the point (4, 12)? ?1. Berries 40 30 20 10 ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, Pencil Shading ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, Red Curve ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,, ,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, Red ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, Blue Curve ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, Shading ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, 10 20 30 40 Nuts , 0 (e) What is the slope of his indi? erence curve at the point (9, 12)? at the point (4, 16)? ?2/3 ?1. (f ) Do the indi? erence curves you have drawn for Ambrose exhibit diminishing marginal rate of substitution? Yes. (g) Does Ambrose have convex preferences? Yes. 3. 3 (0) Shirley Sixpack is in the habit of drinking beer each evening while watching ââ¬Å"The Best of Bowleramaâ⬠on TV. She has a strong thumb and a big refrigerator, so she doesnââ¬â¢t care about the size of the cans that beer comes in, she only cares about how much beer she has. (a) On the graph below, draw some of Shirleyââ¬â¢s indi? erence curves between 16-ounce cans and 8-ounce cans of beer. Use blue ink to draw these indi? erence curves. 22 PREFERENCES (Ch. 3) 8-ounce 8 6 Blue Lines 4 Red Lines 2 0 2 4 6 8 16-ounce (b) Lorraine Quiche likes to have a beer while she watches ââ¬Å"Masterpiece Theatre. â⬠She only allows herself an 8-ounce glass of beer at any one time. Since her cat doesnââ¬â¢t like beer and she hates stale beer, if there is more than 8 ounces in the can she pours the excess into the sink. (She has no moral scruples about wasting beer. On the graph above, use red ink to draw some of Lorraineââ¬â¢s indi? erence curves. 3. 4 (0) Elmo ? nds himself at a Coke machine on a hot and dusty Sunday. The Coke machine requires exact changeââ¬âtwo quarters and a dime. No other combination of coins will make anything come out of the machine. No stores are open; no one is in sight. Elmo is so thirsty that the only thing he cares about is how many soft drinks he will be able to buy with the change in his pocket; the more he can buy, the better. While Elmo searches his pockets, your task is to draw some indi? erence curves that describe Elmoââ¬â¢s preferences about what he ? nds. NAME 23 Dimes 8 6 4 2 ,,,,,,,,,,,, , , ,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , Blue ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, Red , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , shading ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, shading , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, ,,,,,, ,,,,,,,,,,,, , , ,,,, ,,,,,,,,,,,,,, , ,,,,,,,,,,,, , , , ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,, , , , ,,,,,,,,,,,,,,,,,, Black ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,, ,,,,,,,,,,,, , , ,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , lines ,,,,,,,,,,,,,,,,,, , , , ,,,,,,,,,,,,,,,,,, , , ,,,,,,,,,,,,,,,,,, , 2 4 6 8 Quarters 0 (a) If Elmo has 2 quarters and a dime in his pockets, he can buy 1 soft drink. How many soft drinks can he buy if he has 4 quarters and 2 dimes? 2. (b) Use red ink to shade in the area on the graph consisting of all combinations of quarters and dimes that Elmo thinks are just indi? rent to having 2 quarters and 1 dime. (Imagine that it is possible for Elmo to have fractions of quarters or of dimes, but, of course, they would be useless in the machine. ) Now use blue ink to shade in the area consisting of all combinations that Elmo thinks are just indi? erent to having 4 quarters and 2 dimes. Notice that Elmo has indi? erence ââ¬Å"bands,â⬠not indi? erence curves. (c) Does Elmo have convex preferences between dimes and quarters? Yes. (d) Does Elmo always prefer more of both kinds of money to less? No. (e) Does Elmo have a bliss point? No. (f ) If Elmo had arrived at the Coke machine on a Saturday, the drugstore across the street would have been open. This drugstore has a soda fountain that will sell you as much Coke as you want at a price of 4 cents an ounce. The salesperson will take any combination of dimes and quarters in payment. Suppose that Elmo plans to spend all of the money in his pocket on Coke at the drugstore on Saturday. On the graph above, use pencil or black ink to draw one or two of Elmoââ¬â¢s indi? erence curves between quarters and dimes in his pocket. (For simplicity, draw your graph 24 PREFERENCES (Ch. 3) as if Elmoââ¬â¢s fractional quarters and fractional dimes are accepted at the corresponding fraction of their value. ) Describe these new indi? erence curves in words. Line segments with slope ? 2. 5. 3. (0) Randy Ratpack hates studying both economics and history. The more time he spends studying either subject, the less happy he is. But Randy has strictly convex preferences. (a) Sketch an indi? erence curve for Randy where the two commodities are hours per week spent studying economics and hours per we ek spent studying history. Will the slope of an indi? erence curve be positive or negative? Negative. Steeper. (b) Do Randyââ¬â¢s indi? erence curves get steeper or ? atter as you move from left to right along one of them? Hours studying history 8 6 Preference direction 4 2 0 2 4 6 8 Hours studying economics 3. 6 (0) Flossy Toothsome likes to spend some time studying and some time dating. In fact her indi? rence curves between hours per week spent studying and hours per week spent dating are concentric circles around her favorite combination, which is 20 hours of studying and 15 hours of dating per week. The closer she is to her favorite combination, the happier she is. NAME 25 (a) Suppose that Flossy is currently studying 25 hours a week and dating 3 hours a week. Would she prefer to be studying 30 hours a week and dating 8 hours a week? Yes. (Hint: Remember the formula for the distance between two points in the plane? ) (b) On the axes below, draw a few of Flossyââ¬â¢s indi? erence curves and use your diagram to illustrate which of the two time allocations discussed above Flossy would prefer. Hours dating 40 30 Preference direction 20 (20,15) 10 (30,8) (25,3) 0 10 20 30 40 Hours studying , 3. 7 (0) Joan likes chocolate cake and ice cream, but after 10 slices of cake, she gets tired of cake, and eating more cake makes her less happy. Joan always prefers more ice cream to less. Joanââ¬â¢s parents require her to eat everything put on her plate. In the axes below, use blue ink to draw a set of indi? erence curves that depict her preferences between plates with di? erent amounts of cake and ice cream. Be sure to label the axes. (a) Suppose that Joanââ¬â¢s preferences are as before, but that her parents allow her to leave anything on her plate that she doesnââ¬â¢t want. On the graph below, use red ink to draw some indi? erence curves depicting her preferences between plates with di? erent amounts of cake and ice cream. Ice cream Blue curves Red curves Preference direction 10 Chocolate cake 26 PREFERENCES (Ch. 3) 3. 8 (0) Professor Goodheart always gives two midterms in his communications class. He only uses the higher of the two scores that a student gets on the midterms when he calculates the course grade. (a) Nancy Lerner wants to maximize her grade in this course. Let x1 be her score on the ? rst midterm and x2 be her score on the second midterm. Which combination of scores would Nancy prefer, x1 = 20 and x2 = 70 or x1 = 60 and x2 = 60? (20,70). b) On the graph below, use red ink to draw an indi? erence curve showing all of the combinations of scores that Nancy likes exactly as much as x1 = 20 and x2 = 70. Also use red ink to draw an indi? erence curve showing the combinations that Nancy likes exactly as much as x1 = 60 and x2 = 60. (c) Does Nanc y have convex preferences over these combinations? No. Grade on second midterm 80 60 Red curves Blue curves 40 , 20 Preference direction 0 20 40 60 80 Grade on first midterm (d) Nancy is also taking a course in economics from Professor Stern. Professor Stern gives two midterms. Instead of discarding the lower grade, Professor Stern discards the higher one. Let x1 be her score on the ? st midterm and x2 be her score on the second midterm. Which combination of scores would Nancy prefer, x1 = 20 and x2 = 70 or x1 = 60 and x2 = 50? (60,50). (e) On the graph above, use blue ink to draw an indi? erence curve showing all of the combinations of scores on her econ exams that Nancy likes exactly as well as x1 = 20 and x2 = 70. Also use blue ink to draw an indi? erence curve showing the combinations that Nancy likes exactly as well as x1 = 60 and x2 = 50. Does Nancy have convex preferences over these combinations? Yes. NAME 27 3. 9 (0) Mary Granola loves to consume two goods, grapefruits and a vocados. (a) On the graph below, the slope of an indi? rence curve through any point where she has more grapefruits than avocados is ? 2. This means that when she has more grapefruits than avocados, she is willing to give up 2 grapefruit(s) to get one avocado. (b) On the same graph, the slope of an indi? erence curve at points where she has fewer grapefruits than avocados is ? 1/2. This means that when she has fewer grapefruits than avocados, she is just willing to give up 1/2 grapefruit(s) to get one avocado. (c) On this graph, draw an indi? erence curve for Mary through bundle (10A, 10G). Draw another indi? erence curve through (20A, 20G). Grapefruits 40 30 Slope -2 20 10 Slope -1/2 45 0 10 20 30 40 Avocados (d) Does Mary have convex preferences? Yes. 3. 0 (2) Ralph Rigid likes to eat lunch at 12 noon. However, he also likes to save money so he can buy other consumption goods by attending the ââ¬Å"early bird specialsâ⬠and ââ¬Å"late lunchersâ⬠promoted by his local d iner. Ralph has 15 dollars a day to spend on lunch and other stu?. Lunch at noon costs $5. If he delays his lunch until t hours after noon, he is able to buy his lunch for a price of $5 ? t. Similarly if he eats his lunch t hours before noon, he can buy it for a price of $5 ? t. (This is true for fractions of hours as well as integer numbers of hours. ) (a) If Ralph eats lunch at noon, how much money does he have per day to spend on other stu $10. 8 PREFERENCES (Ch. 3) (b) How much money per day would he have left for other stu? if he ate at 2 P. M.? $12. (c) On the graph below, use blue ink to draw the broken line that shows combinations of meal time and money for other stu? that Ralph can just a? ord. On this same graph, draw some indi? erence curves that would be consistent with Ralph choosing to eat his lunch at 11 A. M. Money 20 15 10 5 0 10 11 12 1 2 Time 3. 11 (0) Henry Hanover is currently consuming 20 cheeseburgers and 20 Cherry Cokes a week. A typical indi? erence curve fo r Henry is depicted below. Cherry Coke 40 30 20 10 0 10 20 30 40 Cheeseburgers NAME 29 (a) If someone o? red to trade Henry one extra cheeseburger for every Coke he gave up, would Henry want to do this? No. Yes. (b) What if it were the other way around: for every cheeseburger Henry gave up, he would get an extra Coke. Would he accept this o? er? (c) At what rate of exchange would Henry be willing to stay put at his current consumption level? 2 cheeseburgers for 1 Coke. 3. 12 (1) Tommy Twit is happiest when he has 8 cookies and 4 glasses of milk per day. Whenever he has more than his favorite amount of either food, giving him still more makes him worse o?. Whenever he has less than his favorite amount of either food, giving him more makes him better o?. His mother makes him drink 7 glasses of milk and only allows him 2 cookies per day. One day when his mother was gone, Tommyââ¬â¢s sadistic sister made him eat 13 cookies and only gave him 1 glass of milk, despite the fact that Tommy complained bitterly about the last 5 cookies that she made him eat and begged for more milk. Although Tommy complained later to his mother, he had to admit that he liked the diet that his sister forced on him better than what his mother demanded. (a) Use black ink to draw some indi? erence curves for Tommy that are consistent with this story. Milk 12 11 10 9 8 7 6 5 4 3 2 1 (13,1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (8,4) (2,7) Cookies 30 PREFERENCES (Ch. 3) b) Tommyââ¬â¢s mother believes that the optimal amount for him to consume is 7 glasses of milk and 2 cookies. She measures deviations by absolute values. If Tommy consumes some other bundle, say, (c, m), she measures his departure from the optimal bundle by D = |7 ? m| + |2 ? c|. The larger D is, the worse o? she thinks Tommy is. Use blue ink in the graph above to sketch a few of Mrs. Twitââ¬â¢s indi? erence curves for Tommyââ¬â¢s consumption. (Hint: Before you try to draw Mrs. Twitââ¬â¢s indi? erence curves, we suggest that you take a piece of scrap paper and draw a graph of the locus of points (x1 , x2 ) such that |x1 | + |x2 | = 1. ) 3. 13 (0) Coach Steroid likes his players to be big, fast, and obedient. If player A is better than player B in two of these three characteristics, then Coach Steroid prefers A to B, but if B is better than A in two of these three characteristics, then Steroid prefers B to A. Otherwise, Steroid is indi? erent between them. Wilbur Westinghouse weighs 340 pounds, runs very slowly, and is fairly obedient. Harold Hotpoint weighs 240 pounds, runs very fast, and is very disobedient. Jerry Jacuzzi weighs 150 pounds, runs at average speed, and is extremely obedient. (a) Does Steroid prefer Westinghouse to Hotpoint or vice versa? He prefers Westinghouse to Hotpoint. (b) Does Steroid prefer Hotpoint to Jacuzzi or vice versa? He prefers Hotpoint to Jacuzzi. (c) Does Steroid prefer Westinghouse to Jacuzzi or vice versa? He prefers Jacuzzi to Westinghouse. (d) Does Coach Steroid have transitive preferences? No. e) After several losing seasons, Coach Steroid decides to change his way of judging players. According to his new preferences, Steroid prefers player A to play er B if player A is better in all three of the characteristics that Steroid values, and he prefers B to A if player B is better at all three things. He is indi? erent between A and B if they weigh the same, are equally fast, and are equally obedient. In all other cases, Coach Steroid simply says ââ¬Å"A and B are not comparable. â⬠(f ) Are Coach Steroidââ¬â¢s new preferences complete? (g) Are Coach Steroidââ¬â¢s new preferences transitive? No. Yes. NAME 31 (h) Are Coach Steroidââ¬â¢s new preferences re? exive? Yes. 3. 14 (0) The Bear family is trying to decide what to have for dinner. Baby Bear says that his ranking of the possibilities is (honey, grubs, Goldilocks). Mama Bear ranks the choices (grubs, Goldilocks, honey), while Papa Bearââ¬â¢s ranking is (Goldilocks, honey, grubs). They decide to take each pair of alternatives and let a majority vote determine the family rankings. (a) Papa suggests that they ? rst consider honey vs. grubs, and then the winner of that contest vs. Goldilocks. Which alternative will be chosen? Goldilocks. (b) Mama suggests instead that they consider honey vs. Goldilocks and then the winner vs. grubs. Which gets chosen? Grubs. (c) What order should Baby Bear suggest if he wants to get his favorite food for dinner? Grubs versus Goldilocks, then Honey versus the winner. d) Are the Bear familyââ¬â¢s ââ¬Å"collective preferences,â⬠as determined by voting, transitive? No. 3. 15 (0) Olson likes strong co? ee, the stronger the better. But he canââ¬â¢t distinguish small di? erences. Over the years, Mrs. Olson has discovered th at if she changes the amount of co? ee by more than one teaspoon in her six-cup pot, Olson can tell that she did it. But he cannot distinguish di? erences smaller than one teaspoon per pot. Where A and B are two di? erent cups of co? ee, let us write A B if Olson prefers cup A to cup B. Let us write A B if Olson either prefers A to B, or canââ¬â¢t tell the di? erence between them. Let us write A ? B if Olson canââ¬â¢t tell the di? erence between cups A and B. Suppose that Olson is o? red cups A, B, and C all brewed in the Olsonsââ¬â¢ six-cup pot. Cup A was brewed using 14 teaspoons of co? ee in the pot. Cup B was brewed using 14. 75 teaspoons of co? ee in the pot and cup C was brewed using 15. 5 teaspoons of co? ee in the pot. For each of the following expressions determine whether it is true of false. (a) A ? B. (b) B ? A. True. True. 32 PREFERENCES (Ch. 3) (c) B ? C. (d) A ? C. (e) C ? A. (f ) A B. True. False. False. True. True. True. False. True. False. False. False. Fa lse. True. , transitive? (g) B A. (h) B C. (i) A C. (j) C A. (k) A B. (l) B A. (m) B C. (n) A C. (o) C A. (p) Is Olsonââ¬â¢s ââ¬Å"at-least-as-good-asâ⬠relation, No. No. (q) Is Olsonââ¬â¢s ââ¬Å"canââ¬â¢t-tell-the-di? renceâ⬠relation, ? , transitive? (r) is Olsonââ¬â¢s ââ¬Å"better-thanâ⬠relation, , transitive. Yes. Chapter 4 NAME Utility Introduction. In the previous chapter, you learned about preferences and indi? erence curves. Here we study another way of describing preferences, the utility function. A utility function that represents a personââ¬â¢s preferences is a function that assigns a utility number to each commodity bundle. The numbers are assigned in such a way that commodity bundle (x, y) gets a higher utility number than bundle (x , y ) if and only if the consumer prefers (x, y) to (x , y ). If a consumer has the utility function U (x1 , x2 ), then she will be indi? rent between two bundles if they are assigned the same utility. If yo u know a consumerââ¬â¢s utility function, then you can ?nd the indi? erence curve passing through any commodity bundle. Recall from the previous chapter that when good 1 is graphed on the horizontal axis and good 2 on the vertical axis, the slope of the indi? erence curve passing through a point (x1 , x2 ) is known as the marginal rate of substitution. An important and convenient fact is that the slope of an indi? erence curve is minus the ratio of the marginal utility of good 1 to the marginal utility of good 2. For those of you who know even a tiny bit of calculus, calculating marginal utilities is easy. To ? d the marginal utility of either good, you just take the derivative of utility with respect to the amount of that good, treating the amount of the other good as a constant. (If you donââ¬â¢t know any calculus at all, you can calculate an approximation to marginal utility by the method described in your textbook. Also, at the beginning of this section of the workbook, we list the marginal utility functions for commonly encountered utility functions. Even if you canââ¬â¢t compute these yourself, you can refer to this list when later problems require you to use marginal utilities. ) Example: Arthurââ¬â¢s utility function is U (x1 , x2 ) = x1 x2 . Let us ? nd the indi? rence curve for Arthur that passes through the point (3, 4). First, calculate U (3, 4) = 3 ? 4 = 12. The indi? erence curve through this point consists of all (x1 , x2 ) such that x1 x2 = 12. This last equation is equivalent to x2 = 12/x1 . Therefore to draw Arthurââ¬â¢s indi? erence curve through (3, 4), just draw the curve with equation x2 = 12/x1 . At the point (x1 , x2 ), the marginal utility of good 1 is x2 and the marginal utility of good 2 is x1 . Therefore Arthurââ¬â¢s marginal rate of substitution at the point (3, 4) is ? x2 /x1 = ? 4/3. Example: Arthurââ¬â¢s uncle, Basil, has the utility function U ? (x1 , x2 ) = 31 x2 ? 10. Notice that U ? (x1 , x2 ) = 3U (x1 , x2 ) ? 0, where U (x1 , x2 ) is Arthurââ¬â¢s utility function. Since U ? is a positive multiple of U minus a constant, it must be that any change in consumption that increases U will also increase U ? (and vice versa). Therefore we say that Basilââ¬â¢s utility function is a monotonic increasing transformation of Arthurââ¬â¢s utility function. Let 34 UTILITY (Ch. 4) us ? nd Basilââ¬â¢s indi? erence curve through the point (3, 4). First we ? nd that U ? (3, 4) = 3? 3? 4? 10 = 26. The indi? erence curve passing through this point consists of all (x1 , x2 ) such that 31 x2 ? 10 = 26. Simplify this last expression by adding 10 to both sides of the equation and dividing both sides by 3. You ? d x1 x2 = 12, or equivalently, x2 = 12/x1 . This is exactly the same curve as Arthurââ¬â¢s indi? erence curve through (3, 4). We could have known in advance that this would happen, because if two consumersââ¬â¢ utility functions are monotonic increasing transformations of each othe r, then these consumers must have the same preference relation between any pair of commodity bundles. When you have ? nished this workout, we hope that you will be able to do the following: â⬠¢ Draw an indi? erence curve through a speci? ed commodity bundle when you know the utility function. â⬠¢ Calculate marginal utilities and marginal rates of substitution when you know the utility function. Determine whether one utility function is just a ââ¬Å"monotonic transformationâ⬠of another and know what that implies about preferences. â⬠¢ Find utility functions that represent preferences when goods are perfect substitutes and when goods are perfect complements. â⬠¢ Recognize utility functions for commonly studied preferences such as perfect substitutes, perfect complements, and other kinked indi? erence curves, quasilinear utility, and Cobb-Douglas utility. 4. 0 Warm Up Exercise. This is the ? rst of several ââ¬Å"warm up exercisesâ⬠that you will ? nd in Wor kouts. These are here to help you see how to do calculations that are needed in later problems. The answers to all warm up exercises are in your answer pages. If you ? d the warm up exercises easy and boring, go aheadââ¬âskip them and get on to the main problems. You can come back and look at them if you get stuck later. This exercise asks you to calculate marginal utilities and marginal rates of substitution for some common utility functions. These utility functions will reappear in several chapters, so it is a good idea to get to know them now. If you know calculus, you will ? nd this to be a breeze. Even if your calculus is shaky or nonexistent, you can handle the ? rst three utility functions just by using the de? nitions in the textbook. These three are easy because the utility functions are linear. If you do not know any calculus, ? l in the rest of the answers from the back of the workbook and keep a copy of this exercise for reference when you encounter these utility fun ctions in later problems. NAME 35 u(x1 , x2 ) 21 + 32 41 + 62 ax1 + bx2 v 2 x1 + x 2 ln x1 + x2 v(x1 ) + x2 x1 x2 xa xb 1 2 (x1 + 2)(x2 + 1) (x1 + a)(x2 + b) xa + x a 1 2 M U1 (x1 , x2 ) M U2 (x1 , x2 ) M RS(x1 , x2 ) 2 4 a v1 x1 3 6 b 1 1 1 x1 bxaxb? 1 1 2 x1 + 2 x1 + a axa? 1 2 ? ? ? ?2/3 ? 2/3 ? a/b ? v1 1 x ? 1/x1 ? v (x1 ) ? x2 /x1 2 ? ax1 bx 1/x1 v (x1 ) x2 axa? 1 xb 2 1 x2 + 1 x2 + b axa? 1 1 x2 +1 x1 +2 x2 +b x1 +a a? 1 x1 x2 36 UTILITY (Ch. 4) 4. 1 (0) Remember Charlie from Chapter 3? Charlie consumes apples and bananas. We had a look at two of his indi? erence curves. In this problem we give you enough information so you can ? nd all of Charlieââ¬â¢s indi? erence curves. We do this by telling you that Charlieââ¬â¢s utility function happens to be U (xA , xB ) = xA xB . (a) Charlie has 40 apples and 5 bananas. Charlieââ¬â¢s utility for the bundle (40, 5) is U (40, 5) = 200. The indi? erence curve through (40, 5) includes all commodity bundles (xA , xB ) such that xA xB = 200. So 200 the indi? erence curve through (40, 5) has the equation xB = . On xA the graph below, draw the indi? erence curve showing all of the bundles that Charlie likes exactly as well as the bundle (40, 5). Bananas 40 30 20 10 10 20 30 40 Apples (b) Donna o? ers to give Charlie 15 bananas if he will give her 25 apples. Would Charlie have a bundle that he likes better than (40, 5) if he makes this trade? Yes. What is the largest number of apples that Donna could demand from Charlie in return for 15 bananas if she expects h im to be willing to trade or at least indi? erent about trading? 30. (Hint: If Donna gives Charlie 15 bananas, he will have a total of 20 bananas. If he has 20 bananas, how many apples does he need in order to be as well-o? as he would be without trade? ) 4. 2 (0) Ambrose, whom you met in the last chapter, continues to thrive on nuts and berries. You saw two of his indi? erence curves. One indifv ference curve had the equation x2 = 20 ? 4 x1 , and another indi? erence v curve had the equation x2 = 24 ? 4 x1 , where x1 is his consumption of NAME 37 nuts and x2 is his consumption of berries. Now it can be told that Ambrose has quasilinear utility. In fact, his preferences can be represented v by the utility function U (x1 , x2 ) = 4 x1 + x2 . (a) Ambrose originally consumed 9 units of nuts and 10 units of berries. His consumption of nuts is reduced to 4 units, but he is given enough berries so that he is just as well-o? as he was before. After the change, how many units of berries does Ambrose consume? 14.
Tuesday, November 26, 2019
The Legend of Romulus and Remus Essays
The Legend of Romulus and Remus Essays The Legend of Romulus and Remus Paper The Legend of Romulus and Remus Paper Romulus and Remus were twin brothers. Their father was Mars, the God of War; their mother was Rhea Silvia, a vestal virgin and daughter of the King, Numitor. Numitors brother, Amulius, had taken the throne from him and had forced Rhea Silvia to become a vestal virgin so that she would not have any children who might try to take back the throne. When the boys were born, Amulius seized them, put them into a basket and threw them into the river Tiber. He hoped that they would drown. However, the boys were rescued by a she-wolf who fed the babies with her own milk and cared for them. A shepherd called Faustulus saw the wolf with the baby boys. He took them home to his wife. They called the boys Romulus and Remus. When they grew up the boys became shepherds like Faustulus. One day they had a fight with another group of shepherds. Remus was arrested and sent to Numitor as a prisoner. When Numitor heard the story he realised that Remus was his grandson! He told Romulus and Remus what had happened to him and their mother. For revenge, Romulus and Remus attacked their Uncle Amulius and killed him. After that, Romulus and Remus went to live with their grandfather in Alba Longa, but they got bored and missed the countryside where they grew up. They decided to move back to River Tiber where Faustulus had found them and build their own city but the twins argued over where the city should be built. Romulus wanted to build it on the Palatine Hill and Remus wanted to build it on the Capitoline Hill. In the end they built two cities. Unfortunately, the arguing did not stop. They kept teasing each other about their cities. Remus teased his brother about the height of his city walls, saying they were too low. In the end the two cities went to war and Romulus won. Romulus became king of his new city which was called Rome in his honour.
Friday, November 22, 2019
How to Do a Sedimentation Test on Soil
How to Do a Sedimentation Test on Soil For studying sediments, or the sedimentary rocks made of them, geologists are very serious about their lab methods. But with a little care, you can get consistent, fairly accurate results at home for certain purposes. One very basic test is determining the mix of particle sizes in a sediment, whether thats soil, the sediment in a streambed, the grains of sandstone or a batch of material from a landscape supplier. Equipment All you really need is a quart-sized jar and a ruler with millimeters. First, make sure you can measure the height of the jars contents accurately. That might take a little ingenuity, like putting a piece of cardboard underneath the ruler so that the zero mark lines up with the floor inside the jar. (A pad of small sticky notes makes a perfect shim because you can peel off exactly enough sheets to make it precise.) Fill the jar mostly full of water and mix in a pinch of dishwasher detergent (not ordinary soap). Then youre ready to test sediment. Use no more than a half-cup of sediment for your test. Avoid sampling plant matter on the ground surface. Pull out any large pieces of plants, insects, and so on. Break up any clods with your fingers. Use a mortar and pestle, gently, if you have to. If there are only a few grains of gravel, dont worry about it. If theres a lot of gravel, remove it by straining the sediment through a coarse kitchen sieve. Ideally, you want a sieve that will pass anything smaller than 2 millimeters. Particle Sizes Sediment particles are classified as gravel if theyre larger than 2 millimeters, and if theyre between 1/16th and 2 mm, silt if theyre between 1/16th and 1/256th mm, and clay if theyre even smaller. (Heres the official grain size scale used by geologists.) This home test doesnt measure the sediment grains directly. Instead, it relies on Stokes Law, which accurately describes the speed at which particles of different sizes fall in the water. Big grains sink faster than small ones, and clay-size grains sink very slowly indeed. Testing Clean Sediments Clean sediment, like beach sand or desert soil or ballfield dirt, contains little or no organic matter. If you have this kind of material, testing is straightforward. Dump the sediment into the jar of water. The detergent in the water keeps the clay particles separate, in effect washing the dirt off the larger grains and making your measurements more accurate. Sand settles in less than a minute, silt in less than an hour and clay in a day. At that point, ââ¬â¹you can measure the thickness of each layer to estimate the proportions of the three fractions. Heres the most efficient way to do it. Shake the jar of water and sediment thoroughly- a full minute is plenty- set it down and leave it for 24 hours. Then measure the height of the sediment, which includes everything: sand, silt, and clay.Shake the jar again and set it down. After 40 seconds, measure the height of the sediment. This is the sand fraction.Leave the jar alone. After 30 minutes, measure the height of the sediment again. This is the sand-plus-silt fraction.With these three measurements, you have all the information needed to calculate the three fractions of your sediment. Testing Soils Soils differ from clean sediments in that they have organic matter (humus). Add a tablespoon or so of baking soda to the water. That helps this organic matter rise to the top, where you can scoop it out and measure it separately. (It usually amounts to a few percent of the total volume of the sample.) Whats left is clean sediment, which you can measure as described above. At the end, your measurements will let you calculate four fractions- organic matter, sand, silt, and clay. The three sediment size fractions will tell you what to call your soil, and the organic fraction is a sign of the soils fertility. Interpreting the Results There are several ways to interpret the percentages of sand, silt, and clay in a sediment sample. Probably the most useful for everyday life is characterizing a soil. Loam is generally the best kind of soil, consisting of an equal amount of sand and silt and a somewhat smaller amount of clay. The variations from that ideal loam are classified as sandy, silty or clayey loam. The numerical boundaries between those soil classesà and moreà are shown on the USDA soil classification diagram. Geologists use other systems for their purposes, whether its surveying the mud on the seafloor or testing the ground of a construction site. Other professionals, like farm agents and groundskeepers, also use these systems. The two most commonly used in the literature are the Shepard classification and the Folk classification. Professionals use strict procedures and a range of equipment to measure sediment. Get a taste of the complexities in the U.S. Geological Survey:à Open-File Report 00-358.
Thursday, November 21, 2019
Is Globalization Beneficial for Canada Essay Example | Topics and Well Written Essays - 1500 words
Is Globalization Beneficial for Canada - Essay Example China like communist countries earlier visualized globalization as a strategy by capitalist countries to exploit the wealth and resources of other countries. However, the scenario has gradually changed and now most of the countries in the world accept globalization as a blessing rather than a curse. China is the number one exploiter of globalization at present. It is difficult for a country to progress properly with the help of individual capabilities alone. Globalization helps countries to mobilize its resources more effectively with the help of other countries. Collective growth is the major slogan put forward by globalization. Globalization affects almost the entire segments of human life. It affects economic, social, cultural, political and legal aspects of human life. Canada is one country which still keeps some reservations about globalization. Many of the Canadians still believe that globalization may help only rich countries whereas poor countries may not get many benefits ou t of it. In their opinion, globalization may destroy social, cultural, environmental and political values. However, it is an accepted fact that globalization can not only increase the cooperation between countries and but also it can reduce the conflicts between countries. It definitely sounds good that Canadian companies can operate in any part of the world and sell their products anywhere in the world without much barriers because of globalization. Moreover, Canadians may get better products for cheaper prices because of globalization. This paper analyses the pros and cons of globalization and argues that globalization is definitely beneficial to Canada in the long run. Globalization brought many positive political changes in the world. ââ¬Å"Globalization opens up new possibilities for democratic influence on essential common issues which by their nature are about the notion of the nationââ¬â¢s stateâ⬠(Torres, p.364). According to Lieber and Weisberg (2002), ââ¬Å"Glob alization is a vital step toward both a more stable world and better lives for the people within it"(Lieber and Weisberg, p.274). It should be noted that the totalitarian administrations in countries like Libya, Egypt, Syria, Bahrain are on the verge of destruction because of agitations from the public. Globalization helped people in such countries to realize the extent of oppression they are facing and they started struggle for democracy in their countries. ââ¬Å"Globalization is a multifaceted process and can be characterized as a systematic decline in the barriers to the cross-national flow of products, factors (capital and people), values and ideasâ⬠(Kaplinsky, p.46). In countries like America, Britain or Canada, manpower shortage is a big problem whereas in countries like India, China etc skilled manpower is excess. Exchange of workforce and outsourcing like activities help expensive labor oriented countries to exploit cheap labor markets. A work which is costing $ 100 in Canada can be executed in countries like India for $ 50 with the help of outsourcing. Moreover, immigrant communities in Canada always ready to work for cheap wages which help the industries or organizations in Canada to compete effectively in international market. Canadian products cannot reduce the price or compete effectively in the international market if Canadian organizations employ only highly paid locals in their firms. ââ¬Å"Rises in international trade openness have exerted some pressure on policy makers to lower business cost through tax reductions. Tax rate changes improve the international price competitiveness of firms regardless of their level of mobilityâ⬠(Weiss, p.75). Tax reduction is another major advantage of globalization.
Tuesday, November 19, 2019
Remembered Event (Male) Essay Example | Topics and Well Written Essays - 1000 words
Remembered Event (Male) - Essay Example The fact is that I realized that I fell in love with that girl. Definitely, it was love on the spot. I wanted to help her but couldnââ¬â¢t even pronounce a word, for there was lump in my throat. The girl saw my efforts and came closer. With the first sentence of her and probably due to her marvelous smile the stupor chaining me was broken. Suddenly I found my ability to speak and after that very first moment of our conversation or even before it I caught myself on the thought that that girl, her charming name was Emma, was my destiny, my soul-mate and my love for the whole life. Probably, you may think that I am too sentimental for a male. But to my mind manââ¬â¢s obduration works only in the context of a single status or a one when he just doesnââ¬â¢t know what is love or simply doesnââ¬â¢t experience those feelings that I learnt when met Emma. Thus, after that day I laid siege to Emma by the means of every possible way. Surely, my addresses were romantic ones, since romanticism had opened within me to the extent that days and nights I spent inventing plan for our dates. After some time of my tremulous attention Emma said ââ¬Å"yesâ⬠to my proposal of relations. And we started dating. There was no doubt that it was the beginning of the happiest time of my life. At least, I thought in such a way, for I was flying high above the sky. Every day I was planning something new and interesting to make happy my beloved Emma. Time passed apart from her was seemed everlasting. Seconds and minutes spent together were the greatest happiness for us. I felt Emma was my blessing of destiny. We even had our places in parks, cinemas, cafes and just in the streets. We enjoyed each other every moment of our dates without thinking of any serious questions and issues, which were waiting for us in the nearest future. Approximately after seven months of our romantic relations Emma told me that there was no future for us, as her parents didnââ¬â¢t see me as a good life
Subscribe to:
Posts (Atom)